
Inputting and Exporting Files

Luke Chang

Last Revised July 16, 2010

Beginning R users often feel overwhelmed by how difficult it can be just getting
started. The first task that many people struggle with is learning how to import
their data into R . This section will illustrate how many different types of data (e.g.,
delimited and SPSS) can be imported into R with relative ease. In addition, we will
also discuss how files can be saved and exported.

1 Reading in Data Files

1.1 Delimited Files

The first type of data that we will learn how to import is simple tab or comma
delimited text files. These files can be exported using programs such as Excel or
Matlab and are easily imported into R using the read.table function. As an example,
we will import a comma delimited dataset on the relationship between brain size and
IQ in monozygotic twins. If we are connected to the interenet, we can directly read
this file from the course website. To shorten the text we will use the paste() function
to concatenate the website variable with the data filename.

> website="http://sites.google.com/site/uarworkshop/file-cabinet/"

> brainIQ.data<-read.table(paste(website,"BrainIQ.csv",sep=""),

sep=",",header=TRUE)

This command creates the data frame object, brainIQ.data. To ensure that R

can locate the data file, it is important to specify its file path. The read.table

function has several user defined options, which assist in correctly reading in the
data file. The type of delimiter can be specifed using sep = ",", which we use here

1

to indicate that the file is comma delimited. The default is tab delimited. Users
can also specify whether R should use the first row of the file to indicate the variable
names using header = TRUE. Finally, it is also common to tell R the missing value
indicator. For example, na.strings=999999 indicates that any values of 999999

should be considered missing values.

1.2 Interrogating Your Data

One of the things that can potentially be initially psychologically difficult about
switching to R from other analysis programs such as SPSS is that you don’t have a
spreadsheet of your data on display at all times. This can give R the feel of a black
box. However, it is important to remember that your data can be queried with much
greater sophistication then scrolling through a gigantic spreadsheet. For example to
quickly look at your entire data.frame use the print command.

> print(brainIQ.data)

CCMIDSA FIQ HC ORDER PAIR SEX TOTSA TOTVOL WEIGHT

1 6.08 96 54.7 1 1 Female 1913.88 1005 57.607

2 5.73 89 54.2 2 1 Female 1684.89 963 58.968

3 6.22 87 53.0 1 2 Female 1902.36 1035 64.184

4 5.80 87 52.9 2 2 Female 1860.24 1027 58.514

5 7.99 101 57.8 1 3 Female 2264.25 1281 63.958

6 8.42 103 56.9 2 3 Female 2216.40 1272 61.690

7 7.44 103 56.6 1 4 Female 1866.99 1051 133.358

8 6.84 96 55.3 2 4 Female 1850.64 1079 107.503

9 6.48 127 53.1 1 5 Female 1743.04 1034 62.143

10 6.43 126 54.8 2 5 Female 1709.30 1070 83.009

11 7.99 101 57.2 2 6 Male 1689.60 1173 61.236

12 8.76 96 57.2 1 6 Male 1806.31 1079 61.236

13 6.32 93 57.2 2 7 Male 2136.37 1067 83.916

14 6.32 88 57.2 1 7 Male 2018.92 1104 79.380

15 7.60 94 55.8 2 8 Male 1966.81 1347 97.524

16 7.62 85 57.2 1 8 Male 2154.67 1439 99.792

17 6.03 97 57.2 1 9 Male 1767.56 1029 81.648

18 6.59 114 56.5 2 9 Male 1827.92 1100 88.452

19 7.52 113 59.2 2 10 Male 1773.83 1204 79.380

20 7.67 124 58.5 1 10 Male 1971.63 1160 72.576

2

Sometimes you may be interested in just viewing a column or two at a time. Perhaps
you are interested in quickly looking at the weight data for females. If you don’t
remember the column name you can use the names command. Then you can grab
just the female’s weight using the subset command.

> names(brainIQ.data)

[1] "CCMIDSA" "FIQ" "HC" "ORDER" "PAIR"

[6] "SEX" "TOTSA" "TOTVOL" "WEIGHT"

> subset(brainIQ.data$WEIGHT,brainIQ.data$SEX=="Female")

[1] 57.607 58.968 64.184 58.514 63.958 61.690 133.358

[8] 107.503 62.143 83.009

1.2.1 Editing Data

Data frames can easily be edited in R using two different approaches. The first ap-
proach opens up a table editor that is similar to an Excel spreadsheet interface.

> fix(brainIQ.data)

The second approach is to directly change the values of the data frame through the
command line interface. For example, suppose the first subject’s IQ score of 96 was
incorrect and needed to be changed to 104. This can be done directly by telling R to
replace the data value in the first row and second column to 104.

> brainIQ.data[1,2]<-104

You can confirm that the value has been correctly changed by simply displaying the
first subject’s data.

> brainIQ.data[1,]

CCMIDSA FIQ HC ORDER PAIR SEX TOTSA TOTVOL WEIGHT

1 6.08 104 54.7 1 1 Female 1913.88 1005 57.607

1.3 SPSS Files

Files saved in the SPSS format can be imported into R using the read.spss()

function from the foreign package. Using this function it is important to indicate

3

that you want the data saved to a data frame (to.data.frame=TRUE). You may also
want to tell R to use the value labels from the SPSS file (use.value.labels = TRUE)
and whether or not to use the SPSS missing value codes (use.missings=TRUE).

> library(foreign)

> data<-read.spss(paste(website,"BrainIQ.sav",sep=""),

to.data.frame=TRUE,use.value.labels = TRUE,use.missings=TRUE)

2 Exporting Data Files

2.1 Saving Data Frames

Often we are interested in saving a data frame that we have created in RṪhis might
be to be able to easily load it into another program such as Matlab or Excel or
just to have a record of the data. Text files of a data frame can be saved using the
write.table command. For example, perhaps we want to save our modified version
of the brainIQ dataset to a new file.

> write.table(brainIQ.data,file="brainIQdata.txt")

2.2 Saving Objects

Sometimes you might want to save an object such as a data.frame or an analysis.
This can be accomplished using the save command. Simply indicate the object
and the name of the file. For example, we will create an object comprised of the
participant’s full scale IQ and save it to a file.

> FIQ<-brainIQ.data$FIQ

> save(FIQ,file="FIQ.rda")

Later if we wanted to work with that object again we can load it into the R workspace
using the attach function

> load("FIQ.rda")

4

2.3 Saving Sessions

Sometimes you may want to save an entire session, particularly if you have created
many different variables and a number of analyses that you would like to return to.
This can be done using the save.session function. Alternatively, when you quit
R using the q() command, you will be automatically prompted if you want to save
your session.

> save.image(file="RSession_20100713.rda")

If you want to recover your saved session, simply use the load command and indicate
the name of the session.

> load(file="RSession_20100713.rda")

2.4 Exporting to SPSS

Data frames in R can also be exported to SPSS. It is important to note that for
whatever reason this process does not create a .sav file, which can easily be imported
into SPSS. However, R will generate a simple text file and syntax code to import the
file into SPSS using their datalist function. This is helpful if you have a lot of labels
for your factors and want SPSS to automatically import them as labels. However,
it seems fairly straightforward to export delimited files using the write.table()

function, which can then be imported into SPSS.

> write.foreign(brainIQ.data,"brainIQ_data.txt","brainIQ_datalist.sps",

package="SPSS")

5

