
Advanced Plotting

Luke Chang

Last Revised July 19, 2010

The graphing capabilities of R are virtually unlimited (see http://addictedtor.free.fr/graphiques/
for some examples). In this section we will examine several different types of graphs
that I regularly use in my own research. We will also introduce an additional graph-
ing package (e.g., ggplot2) that can add even greater flexibility to the graphing
options in R .

1 Plotting Mixed Models

1.1 Plotting Linear Mixed Models

Often when graphically depicting the results of a linear mixed model we are interested
in seeing (1) the raw data, (2) individual regression lines (i.e., the random effects),
and (3) the group regression line (i.e., the fixed effect factor parameter estimates).
This type of graph can be a nightmare to create in other programs such as SPSS or
even excel. However, it can be created with relative ease using the basic R graphing
tools. For this example we will return to the decision conflict example from the
Ultimatum Game dataset that we previously discussed in the mixed model section.
We will use the basic varying intercept and varying slope Offer amount regression
on RT. Here we will rerun the same model (model 3 from the other section) and
will extract both the fixed effect parameters using the fixef() command and the
random effects coefficients using the ranef() command. As we discussed earlier in
the mixed model section, the random coefficients are random deviations centered
around the fixed effects, so we must add the fixed effects to the random effects for
plotting purposes. This is accomplished by selecting the columns for the intercept
and slope from ranParam and adding them to the corresponding columns of the

1

http://addictedtor.free.fr/graphiques/

fixParam to create the params object. We will use a for loop to plot a regression
line for each subject by iterating through the subNum vector, which contains all of the
subject numbers and using abline to pull the intercept and slope for each iteration
i of the loop.

> library(lme4)

> data<-read.table(paste(website,"UG_Data.txt",sep=""),

header=TRUE,na.strings=999999)

> data<-na.exclude(data)

> data$Condition<-relevel(data$Condition,ref="Computer")

> m3<-lmer(RT~Offer+(1+Offer|Subject),data=data)

> fixParam<-fixef(m3)

> ranParam<-ranef(m3)$Subject

> params<-cbind(ranParam[1]+fixParam[1],ranParam[2]+fixParam[2])

> plot(RT~Offer,data=data,col=rgb(0,0,0,.1),pch=16,cex=4,

ylab="Reaction Time (Seconds)",xlab="Offer Amount ($)")

> subNum<-unique(data$Subject)

> for(i in 1:length(subNum)){

abline(a=params[i,1], b=params[i,2],col="grey",lty=2,lwd=2)

}

> abline(fixParam,lwd=6,col="red")

1.2 Plotting Mixed Logit Models

It is often useful to have a plot accompanying the results of an analysis depicting
the effect of interest. This can be complicated when you are interested in plotting
a sigmoid function from a mixed logit analysis, such as our example from the end
of the mixed model section. This example will demonstrate how to create a sigmoid
plot of an interaction between the amount of money offered and the type of partner
(e.g., Human or Computer). We will use the plotLMER.fnc() from the languageR

package. To begin we calculate a separate regression for each level of condition, by
first creating a subset of the data for each group. We then plot the sigmoid func-
tion using the plotLMER.fnc() function and overlay the plot for both models using
the par(new=TRUE) command. We can create a legend indicating which condition
corresponds to the level of condition using the legend command. Finally, we can
create density rugs of the actual choice data by setting the values of the choices to
a specific height on the y axis and then jittering them at every level of offer. To do

2

1 2 3 4 5

20
00

40
00

60
00

80
00

Offer Amount ($)

R
ea

ct
io

n
T

im
e

(S
ec

on
ds

)

Figure 1: Increased decision conflict for decreasing offer amounts

3

this we search for observations which correspond to either accept (i.e., 1) or reject
(i.e. 0) and replace them with the height we would like them to appear on our graph,
which spans from 0 to 1. We then apply jitter to the x values, which we have ex-
tracted using the model.matrix command and assign these to points on the graph.
Our graph illustrates that participants were more likely to accept unfair offers from
computers compared to humans.

> library(languageR)

> h<-subset(data,data$Condition=="Human")

> c<-subset(data,data$Condition=="Computer")

> m1<-glmer(Decision~Offer+(1|Subject),data=h,

family=binomial(link="logit"))

> m2<-glmer(Decision~Offer+(1|Subject),data=c,

family=binomial(link="logit"))

> plotLMER.fnc(m1,ylimit=0:1,lockYlim=TRUE,linecolor="red",

lwd=4,xlabel="Offer Amount ($)",

ylabel="Probability of Accepting Offer")

log odds are back-transformed to probabilities

> par(new=TRUE)

> plotLMER.fnc(m2,ylimit=0:1,lockYlim=TRUE,linecolor="blue",

lwd=4,xlabel="Offer Amount ($)",

ylabel="Probability of Accepting Offer")

log odds are back-transformed to probabilities

> legend("bottomright", c("Human","Computer"), pch=15,

col=c("red","blue"),title="Condition")

> x1<-h$Decision

> x2<-c$Decision

> x1<-replace(x1,which(x1==1),1.03)

> x1<-replace(x1,which(x1==0),-.03)

> x2<-replace(x2,which(x2==1),1)

> x2<-replace(x2,which(x2==0),.0)

> points(jitter(model.matrix(m1)[,2]),x1,col=rgb(1,0,0,.1),

pch=15,cex=2)

> points(jitter(model.matrix(m2)[,2]),x2,col=rgb(0,0,1,.1),

pch=15,cex=2)

4

log odds are back-transformed to probabilities

log odds are back-transformed to probabilities

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Offer Amount ($)

P
ro

ba
bi

lit
y

of
 A

cc
ep

tin
g

O
ffe

r

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Offer Amount ($)

P
ro

ba
bi

lit
y

of
 A

cc
ep

tin
g

O
ffe

r

Condition

Human
Computer

Figure 2: Output from pval.fnc()

5

2 gplot

Earlier we mentioned that the base barplot function did not have a straightforward
way of adding error bars to a plot. Here we will illustrate how this can be done
using the barplot2 function from the gplots package. For this example we will be
plotting the average acceptance rate for each level of offer amount. We first need to
load the gplots package. Next we will create a summary of the variables we would
like to plot, which will be the mean and also the upper and lower bounds of our
confidence interval, which will be ± one standard deviation. We then put all of these
variables as input into the barplot2 function.

> library(gplots)

> mn<-tapply(data$Decision,data$Offer,mean, na.rm=TRUE)

> ciu<-tapply(data$Decision,data$Offer,sd, na.rm=TRUE)+mn

> cil<--1*tapply(data$Decision,data$Offer,sd, na.rm=TRUE)+mn

> barplot2(mn,plot.ci=TRUE,ci.u=ciu,ci.l=cil,col="gray20",ci.col="red",

ci.lwd = 4,ci.lty=1,xlab="Offer Amount ($)",

ylab="Average Acceptance Rate")

3 ggplot2

While we have mainly explored creating graphs using the basic R plotting functions
there are a number of other graphics engines. ggplot2 is a graphing package for R

that uses its own grammar to allow for plots that are precisely suited to address a spe-
cific problem. The package has a very helpful accompanying websiteand book.

3.1 Barplots

To introduce the power of the package we will continue with the Ultimatum Game
example and plot RT as a function of Offer Amount. First, we will load the ggplot2

package.

> library(ggplot2)

Next we will create a data frame that summarizes our data in terms of mean and
standard error at each level of offer amount. We will use the tapply() function to

6

http://had.co.nz/ggplot2/
http://tinyurl.com/ggplot2-book

1 2 3 5

Offer Amount ($)

A
ve

ra
ge

 A
cc

ep
ta

nc
e

R
at

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 3: Barplot with error bars of average acceptance rates as a function of offer
amount

7

calculate the mean and standard deviation for each level of offer amount. We will
also use the tapply() function to determine the number of observations for each level
of offer using the length command. This will allow us to transform the standard
deviation into standard error by dividing the standard deviation by the sqrt() of
the number of observations. We then add and subtract the se from the mn.

> data$Offer[data$Offer==5]<-4

> offer<-as.factor(c(1,2,3,4))

> se<-tapply(data$RT,data$Offer,sd)/sqrt(tapply(data$RT,data$Offer,length))

> mn<-tapply(data$RT,data$Offer,mean)

> semax<-mn+se

> semin<-mn-se

> dat<-data.frame(cbind(offer,mn,semax,semin))

The ggplot2 package can create standard plot using the qplot() command. How-
ever, it can also build fully customizable plots by building them layer by layer with
the ggplot() command. We will demonstrate how to build a barplot layer by layer
by first creating a ggplot() object, which will use to build different types of graphs.
To do this we specify the dataset to use and also the x and y variables to use as the
defaults in the plots using the aes() command.

> ug<-ggplot(dat,aes(offer,mn))

We can create a simple barplot with lines as error bars by adding the bars with
the geom_bar() command and error bars, here represented as lines, using the the
geom_linerange() command. We can change the x and y labels by adding xlab("?")

and ylab("?") respectively. ggplot automatically creates legends for figures, which
we will suppress here by setting legend.position to none in the opts statement.

> print(ug+geom_bar(stat="identity")

+geom_linerange(aes(ymin=semin, ymax=semax,

col="red", size=2))+xlab("Offer Amount ($)")

+ylab("Mean Response Time (Seconds)")

+ opts(legend.position = "none"))

We can easily change the type of plot from a barplot to a lineplot using the geom_line()
command. We can also change the error bars from lines to whiskers using the
geom_errorbar() command.

> print(ug+geom_line(aes(size=2))

+geom_errorbar(aes(ymin=semin,ymax=semax,col="red",width=.25,size=2))

8

Offer Amount ($)

M
ea

n
R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

0

500

1000

1500

2000

1 2 3 4

Figure 4: Barplot with error bars of average response time as a function of offer
amount

9

Offer Amount ($)

M
ea

n
R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

1600

1800

2000

2200

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 5: Line with error bars of average response time as a function of offer amount

+xlab("Offer Amount ($)")+ylab("Mean Response Time (Seconds)")

+opts(legend.position = "none"))

Another nice feature of building plots layer by layer in ggplot2, is that you can
combine multiple datasets. Here we will overlay the actual RT data over the barplot
by instructing the geom_point() command to use the original dataset rather then
the summary data frame that we use to plot the bars.

> print(ug+geom_bar(stat="identity")+geom_point(data=data,aes(Offer,RT))

+xlab("Offer Amount ($)")+ylab("Mean Response Time (Seconds)"))

10

Offer Amount ($)

M
ea

n
R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

0

2000

4000

6000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●● ●●

●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

●

● ●

●

●

●
● ●

●

●

●

●

●

● ●●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

1 2 3 4

Figure 6: Barplot of average response time as a function of offer amount with distri-
bution of data

11

3.2 Line Plots with Confidence Band

In neuroimaging analyses it is common to report peristimulus plots, or the average
BOLD activity following the onset of a stimuli for a given condition. This is similar
to an ERP in electrophysiology. This example will demonstrate how we can use
ggplot2 to create a peristimulus plot of BOLD activity in the insula for two different
conditions (e.g., Equal and Less)1. We will also plot a ribbon of the confidence of
the average, which is ±1 standard error. Notice in the data file that we have already
calculated the mean and upper and lower standard error for every time point for each
condition. First we create a ggplot object that specifies the data and the x and y
variables, which are Trial and MN respectively. Next we build the plot layer by layer
by adding each graphical item sequentially to the ggplot object Eq. First we add
the confidence band for the first condition Equal using the geom_ribbon() command
and then the line with the geom_line() command. Next we do the same thing for
the Less condition and finally we specify the colors and some additional options to
customize the plot. ggplot2 automatically creates an accompanying legend. While
it seem like a lot of steps, this example shows the power of ggplot2 in generating
fully customizable publication ready plots.

> dat<-read.table(paste(website,"BoldPlot_Data.txt",sep="")

,header=TRUE)

> print(dat)

Trial MN SEU SEL Condition

1 1 2.500000e-03 4.417412e-03 0.0005825875 Equal

2 2 5.000000e-03 7.619684e-03 0.0023803158 Equal

3 3 8.500000e-03 1.254428e-02 0.0044557190 Equal

4 4 1.000000e-02 1.527046e-02 0.0047295372 Equal

5 5 1.450000e-02 2.079996e-02 0.0082000363 Equal

6 6 9.000000e-03 1.490779e-02 0.0030922119 Equal

7 7 1.000000e-02 1.536266e-02 0.0046373356 Equal

8 8 8.500000e-03 1.348527e-02 0.0035147276 Equal

9 9 2.272727e-03 6.380240e-03 -0.0018347851 Equal

10 10 2.941176e-04 1.777518e-03 -0.0011892824 Equal

11 11 -5.882353e-04 5.319995e-04 -0.0017084701 Equal

12 12 -1.225490e-03 -3.184619e-04 -0.0021325185 Equal

13 13 -6.862745e-04 6.849609e-04 -0.0020575099 Equal

14 14 -2.500000e-03 -1.144185e-03 -0.0038558154 Equal

1This data is taken from Chang, Smith, Dufwenberg, & Sanfey (Under Review)

12

15 1 1.250000e-03 2.804338e-03 -0.0003043379 Less

16 2 -1.250000e-03 1.627273e-04 -0.0026627273 Less

17 3 -2.500000e-03 1.048223e-05 -0.0050104822 Less

18 4 1.250000e-03 4.341735e-03 -0.0018417347 Less

19 5 1.250000e-03 4.785534e-03 -0.0022855339 Less

20 6 -6.875000e-03 -3.269594e-03 -0.0104804056 Less

21 7 -4.375000e-03 7.877911e-04 -0.0095377911 Less

22 8 -8.125000e-03 -5.379683e-03 -0.0108703169 Less

23 9 -7.000000e-03 -5.466070e-03 -0.0085339300 Less

24 10 1.528945e-04 9.831155e-04 -0.0006773265 Less

25 11 -2.135854e-04 1.062466e-03 -0.0014896374 Less

26 12 -1.796919e-03 -8.790570e-04 -0.0027147805 Less

27 13 -4.035948e-04 1.304397e-03 -0.0021115862 Less

28 14 -7.329599e-05 1.227175e-03 -0.0013737672 Less

> Eq<-ggplot(dat,aes(Trial,MN))

> print(Eq+geom_ribbon(data=subset(dat,dat$Condition=="Equal"),

aes(ymin=SEL,ymax=SEU),fill="light yellow")

+geom_line(data=subset(dat,dat$Condition=="Equal"),

size=2,aes(colour="Equal"))

+geom_ribbon(data=subset(dat,dat$Condition=="Less"),

aes(Trial,MN,ymin=SEL,ymax=SEU),fill="light blue")

+geom_line(data=subset(dat,dat$Condition=="Less"),

aes(Trial,MN,colour="Less"),size=2)

+scale_colour_manual("Condition",

c("Equal"="dark orange","Less"="dark blue"))

+opts(title = "Insula Activity", aspect.ratio = 1,

panel.border= theme_rect(colour = "black",size=2))

+ylab("Percent Signal Change")

+xlab("Volume"))

13

Insula Activity

Volume

P
er

ce
nt

 S
ig

na
l C

ha
ng

e

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

2 4 6 8 10 12 14

Condition

Equal

Less

Figure 7: Average Insula Activity

14

	Plotting Mixed Models
	Plotting Linear Mixed Models
	Plotting Mixed Logit Models

	gplot
	ggplot2
	Barplots
	Line Plots with Confidence Band

