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How do we learn in the absence of direct experience? In this issue of Neuron, Charpentier et al. (2020) pro-
poses a new computational account of observational learning, which arbitrates between choice imitation and
goal emulation.
Humans have a remarkable ability to learn

how to navigate an environment in the

absence of direct experience by simply

observing others (Olsson et al., 2020).

For example, imagine traveling to a

foreign country and trying to order food

without being able to understand the

menu. How would you accomplish this?

One strategy is to simply copy others

ahead of you in line—a form of imitation

learning. This will likely result in success-

fully getting something to eat but does

not ensure that you will enjoy it. An alter-

native strategy is to instead infer other

people’s goals and emulate the one that

is most consistent with your own. This re-

quires the additional computation of infer-

ring a model of another person’s mental

state (Gonzalez and Chang, 2019).

In this issue of Neuron, Charpentier

et al. (2020) sought to explore this ques-

tion to better understand how humans

learn from observations. Using a novel

behavioral task, participants observed

another agent choose between two of

three presented slot machines. Each slot
558 Neuron 106, May 20, 2020 ª 2020 Elsev
machine paid out a token color (e.g.,

green, red, or blue), but only one color

could be exchanged for money, which

was unknown to the participants. Thus,

participants could only learn which ma-

chine to pick by observing the other

agent’s choices. Participants were told

that the other agent knew which color

yielded money and that the winning color

could change across trials. Participants

had information about the token color

probabilities for each slot machine and

were able to see the outcome (e.g., token

color) after the agent’s choice. Showing

participants the token color returned by

the chosen slot machine and not its

explicit value required participants to esti-

mate which color was valuable based

solely on the agent’s actions.

Suppose the other agent selects the left

slot machine (Figure 1A). From this

example, it is clear that the agent is not

interested in the red token but uncertain

whether the other agent’s goal was to

maximize the probability of a blue or

green token. During all trials of a given
ier Inc.
block, the position (i.e., left, middle, or

right) and probability distributions of

each slot machine are fixed; however,

the unavailable option varies to modulate

the difficulty of goal inference. For

example, if the rightmost machine in

Figure 1A was unavailable to the agent,

a left choice would then clearly indicate

a goal to obtain the rewarding blue token.

In a third of the trials, participants were

able to play the game themselves for the

potential to earn money (Figure 1B). If

the participant selected the middle slot

machine after observing (Figure 1A),

then they most likely believed that the

other agent’s goal was to maximize green

rather than blue tokens. Across blocks,

the authors manipulated the uncertainty

of the outcome probability distributions

and also switched which color is associ-

ated with a payoff, akin to a hidden

reversal.

Charpentier et al. (2020) evaluated sup-

port for two different observational

learning strategies. The ‘‘choice imita-

tion’’ model simply learned which slot
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Figure 1. Observational Learning Task
(A) Participants observe another player’s decision between two slot machines.
(B) Participants make their own choice.
(C) Arbitration weights from study 1, centered within subject. Error bars reflect ±1 standard error.
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machine (e.g., left, middle, or right) was

more frequently chosen by the other

agent using reinforcement learning. The

‘‘goal emulation’’ model, in contrast, at-

tempted to learn the other agent’s goal

(i.e., which color yielded a payoff) by up-

dating the value of each color via an

approximate Bayesian updating rule and

selecting the machine with the highest

overall expected value. In addition, the

authors explored models that combined

both strategies and incorporated an arbi-

tration control mechanism to determine

which strategy should be employed. The

proposed arbitrationmechanism is similar

to previous work comparing nonsocial

model-free and model-based reinforce-

ment learning (Daw et al., 2005). The basic

idea is that the arbitration controller uses

relative uncertainty to choose which strat-

egy to employ. When a particular strategy

can accurately predict the agent’s

choices, it gets a higher weight, but

when the model is ‘‘surprised’’ and starts

to become less reliable, the other strategy

gets a higher weight. In other words, if the

agent’s goals become more difficult to

infer, then the reliability of a goal emula-

tion model decreases, and an imitation

model is favored. Conversely, if the

agent’s choices appear to be more sto-

chastic (due to rapidly changing goals),

the reliability of an imitation learning

model decreases, and participants will

be more likely to employ a goal emulation

model.

Overall, Charpentier et al. (2020) find

that computational models employing an

arbitration mechanism provided a better

account of participants’ behavioral data
compared to models employing a single

strategy. This was supported by directly

fitting the models to participants’ behav-

ioral data and also simulating the models

to demonstrate that both imitation and

goal emulation behavior could be gener-

ated by the model. This is an important

and often overlooked step when attempt-

ing to falsify computational models (Pal-

minteri et al., 2017). In addition, the au-

thors found that their 2 3 2 design,

crossing certainty in goals with volatility

of payoff color, affected the model’s arbi-

tration weight. Low uncertainty condi-

tions, where an agent’s choices more

clearly indicate its goal, favored the use

of emulation models over imitation, while

imitation was favored slightly more in sta-

ble environments relative to volatile ones.

These behavioral results from study 1 can

be seen in Figure 1C.

Charpentier et al. (2020) explored brain

regions that were potentially associated

with the arbitration mechanism by corre-

lating signals from their computational

model with trial-to-trial fluctuations

in blood-oxygen-level-dependent signal.

They found that the goal emulation reli-

ability signal significantly correlated with

the right anterior insula, while the imitation

reliability signal correlated with the medial

orbitofrontal cortex. They also calculated

the degree of surprise in the goal emula-

tion strategy when participants observed

the outcome of the other agent’s actions

by calculating the Kullback-Leibler diver-

gence between the prior and posterior

values of each color. They found that

this surprise signal significantly correlated

with regions associated with the salience
network, including bilateral insula, dorsal

anterior cingulate, dorsolateral prefrontal

cortex, and parietal cortex.

This paper provides a substantial

improvement in our understanding of

the computations underlying observa-

tional learning, particularly in how

different types of learning strategies

such as choice imitation and goal emula-

tion can be flexibly applied across

different learning environments that may

vary in uncertainty and volatility. The field

of social neuroscience is just beginning

to embrace the use of computational

models (Cheong et al., 2017), and this

paper provides an important advance in

demonstrating how to move beyond

basic reinforcement models. Further-

more, this work demonstrates the impor-

tance of using carefully controlled exper-

imental designs in developing new

models and evaluating their performance

across different experimental controls.

However, one potential limitation to this

approach is whether these models are

specific to this particular experiment or

whether they will generalize to other

observational learning contexts. Looking

to the future, we hope the field will begin

to embrace the use of naturalistic de-

signs when studying the neurocomputa-

tional mechanisms underlying social

cognition (Wheatley et al., 2019). Real

social interactions reflect non-stationary

dynamic processes as people mutually

adapt their behavior and may have

different types of signals and error struc-

tures than will be present in an artificial

interaction. Inadequately sampling the

psychological phenomena of interest
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(e.g., goal emulation) with overly con-

strained experimental designs will bias

researchers to converge on overly

simplistic explanatory models, which

are unlikely to generalize to real-world

contexts (Jolly and Chang, 2019).

A notable strength of this paper is the

inclusion of an additional replication

sample. The authors preregistered their

computational models and brain findings

based on study 1 prior to the collection

of study 2. While some of their brain find-

ings replicated, such as the correlations

with goal emulation reliability and KL

divergence, unfortunately, the correlation

with imitation reliability in the orbitofron-

tal cortex did not. It is currently unusual

for researchers to include a replication

sample in neuroimaging studies due to

the large expense in collecting data.

This practice is incredibly important for

minimizing experimenter bias and overfit-

ting data, particularly in studies that

involve lots of experimenter degrees of

freedom (e.g., computational models

and neuroimaging). However, this repli-

cation study also raises new issues. First,

how should replication results be re-

ported? Charpentier et al. (2020) present

so many different analyses (e.g., ROI,

whole-brain, different parametric regres-

sors across 10 different computational

models) across both study samples that

readers may have a difficult time sorting

out what are the key results that they

should take away from this work. Should

preregistered hypotheses carry more

value than ones generated after data

collection even if the effects replicate

across both studies? What about re-
560 Neuron 106, May 20, 2020
viewers’ comments on the manuscript?

Because these can never be preregis-

tered, should they be demarcated as

‘‘exploratory’’? Second, should we be

more concerned with minimizing false

positives or false negatives? Neuroimag-

ing studies are traditionally highly under-

powered (Cremers et al., 2017) with

meta-analyses estimating an approxi-

mate power of 8% (Button et al., 2013).

If a single study is underpowered,

then filtering results by additional under-

powered replications will certainly

reduce the likelihood of reporting a

spurious finding but will also dramatically

increase the likelihood of missing true ef-

fects hidden in the data, which might

have emerged if the two samples had

been combined to increase the power.

Third, replication studies are expensive,

and funding agencies and early career

scientists may choose to prioritize new

discoveries rather than confirming old

ideas when deciding how to allocate

their limited resources. This has the po-

tential to further exacerbate the eco-

nomic inequality across laboratories

where only a limited number of well-

funded groups can afford to publish cut-

ting edge work that includes indepen-

dent replications. Though we certainly

appreciate the importance of minimizing

experimenter bias and false positives,

there are many other important issues

to consider with the use of preregistra-

tion and replication studies. We look for-

ward to future discussions surrounding

these important issues as the field be-

gins to grapple with these quickly chang-

ing research norms.
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