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1 Using lme4

1.1 Fitting Linear Mixed Models with a Varying Intercept

We will now work through the same Ultimatum Game example from the regression
section and the introduction using the lme4 package. The lme4 package is unique in
that it allows for correlated random variance structures and also allows for crossed
random factors, which makes it particularly suited for analyzing psychology datasets.
First, it is necessary to load the package and a data file.

> library(lme4)

> data <- read.table(paste(website, "UG_Data.txt",

sep = ""), header = TRUE, na.strings = 999999)

> data$Condition <- relevel(data$Condition, ref = "Computer")

Next we can build the first model. Remember that we are interested in examining
the effect of the amount of money Offered on Reaction Time. We can specify that
Subject is a random effect with a varying intercept with the (1|Subject) term

> m1 <- lmer(RT ~ Offer + (1 | Subject), data = data)

> summary(m1)

Linear mixed model fit by REML

Formula: RT ~ Offer + (1 | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10901 10919 -5446 10913 10893

1



Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 241013 490.93

Residual 1139459 1067.45

Number of obs: 648, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 2260.71 145.67 15.519

Offer -125.17 28.35 -4.415

Correlation of Fixed Effects:

(Intr)

Offer -0.535

Consistent with both previous examples, we see that offer amount is negatively re-
lated to reaction time. We see that the random effect has some variability, which
represents variability in the participant’s intercepts. We can easily examine the ran-
dom effects by using the ranef() or coef() commands. These values are referred
to as Best Linear Unbiased Predictors (BLUPs) by the developers of the lme4 pack-
age.

> coef(m1)

$Subject

(Intercept) Offer

212 1792.293 -125.1725

213 1948.706 -125.1725

214 1338.696 -125.1725

215 2936.108 -125.1725

216 2209.936 -125.1725

217 2936.795 -125.1725

218 1781.708 -125.1725

301 2041.808 -125.1725

302 2599.778 -125.1725

303 2358.933 -125.1725

304 2240.708 -125.1725

309 2416.817 -125.1725

310 1667.462 -125.1725

311 2423.620 -125.1725
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405 2143.308 -125.1725

406 2484.893 -125.1725

407 2291.863 -125.1725

408 3079.382 -125.1725

We can see that these intercept values are very similar to the ones we fit in the
introductory example, with a correlation of 0.94.

> cor(ranef(m1)$Subject, dat$Intercept)

[,1]

(Intercept) 0.9409049

1.2 Fitting Linear Mixed Models with a Varying Slope

The previous example examined a varying intercept model. This section will fit a
varying slope model on the same dataset. To do this we tell lmer that we do not
want a varying intercept, but we do want varying slope of Offer amount for each
subject (0+Offer|Subject).

> m2 <- lmer(RT ~ Offer + (0 + Offer | Subject),

data = data)

> summary(m1)

Linear mixed model fit by REML

Formula: RT ~ Offer + (1 | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10901 10919 -5446 10913 10893

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 241013 490.93

Residual 1139459 1067.45

Number of obs: 648, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 2260.71 145.67 15.519

Offer -125.17 28.35 -4.415
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Correlation of Fixed Effects:

(Intr)

Offer -0.535

We can examine the fitted coefficients the same way using the coeff() command.

> coef(m2)

$Subject

(Intercept) Offer

212 2260.712 -219.53839

213 2260.712 -209.93628

214 2260.712 -346.81506

215 2260.712 20.35713

216 2260.712 -144.58262

217 2260.712 43.64018

218 2260.712 -233.25636

301 2260.712 -173.84963

302 2260.712 -63.40676

303 2260.712 -113.61648

304 2260.712 -96.31508

309 2260.712 -82.46747

310 2260.712 -270.37776

311 2260.712 -58.52931

405 2260.712 -163.82389

406 2260.712 -88.63200

407 2260.712 -138.42735

408 2260.712 86.47238

Mixed models can be compared the same way as the linear models using the anova()
function. However, now rather than F tests, anova() calculates a χ2.

> anova(m1, m2)

Data: data

Models:

m1: RT ~ Offer + (1 | Subject)

m2: RT ~ Offer + (0 + Offer | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1 4 10921 10939 -5456.4

m2 4 10960 10978 -5476.3 0 0 < 2.2e-16 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The χ2 test indicates that the first model fits the data significantly better than the
second model.

1.3 Fitting Linear Mixed Models with a Varying Intercept
and Slope

We can also fit a varying intercept and slope model to the data. We simply need to
tell lmer that we want both a varying intercept and varying slopes of Offer amount
for each subject (1+Offer|Subject).

> m3 <- lmer(RT ~ Offer + (1 + Offer | Subject),

data = data)

> summary(m3)

Linear mixed model fit by REML

Formula: RT ~ Offer + (1 + Offer | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10901 10928 -5445 10910 10889

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 410745.0 640.894

Offer 2950.9 54.323 -1.000

Residual 1132799.6 1064.331

Number of obs: 648, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 2260.71 174.96 12.921

Offer -125.17 31.04 -4.033

Correlation of Fixed Effects:

(Intr)

Offer -0.761

5



Again we can check the BLUPs using the coef() command. We can also compare
this model with the varying intercept model.

> coef(m3)

$Subject

(Intercept) Offer

212 1623.062 -71.12478

213 1868.758 -91.95015

214 1059.288 -23.33889

215 3165.954 -201.90148

216 2205.325 -120.47787

217 3132.268 -199.04620

218 1625.984 -71.37248

301 1969.570 -100.49504

302 2732.062 -165.12447

303 2406.731 -137.54917

304 2184.283 -118.69434

309 2456.376 -141.75710

310 1491.564 -59.97891

311 2431.877 -139.68054

405 2123.331 -113.52798

406 2578.784 -152.13253

407 2332.334 -131.24319

408 3305.266 -213.70962

> anova(m1, m3)

Data: data

Models:

m1: RT ~ Offer + (1 | Subject)

m3: RT ~ Offer + (1 + Offer | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1 4 10921 10939 -5456.4

m3 6 10922 10948 -5454.8 3.247 2 0.1972

We see that the varying intercept and slope model does not fit the data any better
than the simplest varying intercept model, so we will proceed with model 1. We
can now continue with the example using identical models to the regression section
except this time in the context of mixed models.
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> m4 <- lmer(RT ~ Offer + I(Offer^2) + (1 | Subject),

data = data)

> summary(m4)

Linear mixed model fit by REML

Formula: RT ~ Offer + I(Offer^2) + (1 | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10870 10892 -5430 10888 10860

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 242175 492.11

Residual 1097608 1047.67

Number of obs: 648, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 1431.87 220.21 6.502

Offer 587.64 145.30 4.044

I(Offer^2) -116.04 23.22 -4.998

Correlation of Fixed Effects:

(Intr) Offer

Offer -0.806

I(Offer^2) 0.753 -0.981

> m5 <- lmer(RT ~ Offer * Condition + I(Offer^2) +

(1 | Subject), data = data)

> summary(m5)

Linear mixed model fit by REML

Formula: RT ~ Offer * Condition + I(Offer^2) + (1 | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10852 10883 -5419 10887 10838

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 242149 492.09

Residual 1098577 1048.13

Number of obs: 648, groups: Subject, 18
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Fixed effects:

Estimate Std. Error t value

(Intercept) 1577.55 252.26 6.254

Offer 542.73 150.60 3.604

ConditionHuman -218.53 184.40 -1.185

I(Offer^2) -116.04 23.23 -4.996

Offer:ConditionHuman 67.36 59.06 1.141

Correlation of Fixed Effects:

(Intr) Offer CndtnH I(O^2)

Offer -0.791

ConditinHmn -0.487 0.230

I(Offer^2) 0.658 -0.947 0.000

Offr:CndtnH 0.429 -0.261 -0.881 0.000

> m6 <- lmer(RT ~ Offer * Condition + I(Offer^2) *

Condition + (1 | Subject), data = data)

> summary(m6)

Linear mixed model fit by REML

Formula: RT ~ Offer * Condition + I(Offer^2) * Condition + (1 | Subject)

Data: data

AIC BIC logLik deviance REMLdev

10839 10874 -5411 10881 10823

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 242371 492.31

Residual 1090571 1044.30

Number of obs: 648, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 2130.50 343.40 6.204

Offer 67.19 250.85 0.268

ConditionHuman -1047.95 395.85 -2.647

I(Offer^2) -38.63 40.08 -0.964

Offer:ConditionHuman 780.66 307.23 2.541

ConditionHuman:I(Offer^2) -116.12 49.09 -2.365
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Correlation of Fixed Effects:

(Intr) Offer CndtnH I(O^2) Off:CH

Offer -0.892

ConditinHmn -0.768 0.774

I(Offer^2) 0.834 -0.981 -0.723

Offr:CndtnH 0.728 -0.816 -0.948 0.801

CndH:I(O^2) -0.681 0.801 0.886 -0.816 -0.981

> anova(m1, m4, m5, m6)

Data: data

Models:

m1: RT ~ Offer + (1 | Subject)

m4: RT ~ Offer + I(Offer^2) + (1 | Subject)

m5: RT ~ Offer * Condition + I(Offer^2) + (1 | Subject)

m6: RT ~ Offer * Condition + I(Offer^2) * Condition + (1 | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1 4 10921 10939 -5456.4

m4 5 10898 10920 -5444.1 24.5790 1 7.132e-07 ***

m5 7 10901 10932 -5443.4 1.4566 2 0.48272

m6 8 10897 10933 -5440.6 5.6165 1 0.01779 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

After completing the exercise, we can conclude that the results we reported earlier in
the regression section were accurate, even when modeling for the repeated structure
of the data.

1.4 p-Values

You may have noticed that there are no p-values associated with the parameter es-
timates from the model output 1. While the lme4 package does provide t values, the
authors have admitted to not knowing how to calculate exact values and are perplexed
as to how to best approximate the degrees of freedom in a mixed model framework,
particularly with unbalanced designs and correlated random factors. In SAS there

1For a more detailed discussion of this problem see Baayen, Davidson, and Bates (2008) in
Journal of Memory and Language
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are apparently 6 different df approximations, which lead to different p-values. For
example, how does one even go about calculating the number of parameters for a
mixed model? In the simple model we used in the example, there are 6, fixed ef-
fects values 1 random effect, and 1 value for the variance of the error term. But
what about the 18 parameters that were calculated for each participant’s intercept?
The authors here have chosen to abstain from providing p-values, until they have
developed a more accurate method with which they are more comfortable. Unfortu-
nately, most of us work in areas where providing p-values is still customary, which
makes this particularly frustrating. However, do not be discouraged there are two
approaches which can be taken, both of which, unfortunately, suffer from their own
respective problems. First, you can use the t value reported and approximate the de-
grees of freedom by subtracting the number of observations - the number of

fixed effects parameters - 1. This is the approach typically taken in standard
linear models and happens to be the strategy adopted by SPSS, however, it is likely
anticonservative, particularly when the sample size is small. An alternative approach
is to use markov chain monte carlo simulations on the parameter estimates and cal-
culate the p-values based on the confidence intervals of the empirically observed
distributions. This can be accomplished using the mcmcsamp() function included in
the lme4 package. This approach has been made easier with the pval.fnc() from
the languageR package. We can use this approach to examine the p-values on our
best fitting model.

> library(languageR)

> pvals.fnc(m6)

$fixed

Estimate MCMCmean HPD95lower

(Intercept) 2130.50 2132.28 1477.0

Offer 67.19 65.44 -412.8

ConditionHuman -1047.95 -1050.16 -1827.4

I(Offer^2) -38.63 -38.31 -117.7

Offer:ConditionHuman 780.66 782.41 156.2

ConditionHuman:I(Offer^2) -116.12 -116.42 -210.9

HPD95upper pMCMC Pr(>|t|)

(Intercept) 2806.63 0.0001 0.0000

Offer 561.28 0.8016 0.7889

ConditionHuman -286.18 0.0062 0.0083

I(Offer^2) 37.17 0.3396 0.3356

Offer:ConditionHuman 1357.06 0.0088 0.0113
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Figure 1: Output from pval.fnc()

ConditionHuman:I(Offer^2) -20.44 0.0146 0.0183

$random

Groups Name Std.Dev. MCMCmedian MCMCmean

1 Subject (Intercept) 492.3118 450.4866 461.2617

2 Residual 1044.3039 1047.5423 1047.8945

HPD95lower HPD95upper

1 306.7829 640.7244

2 991.9578 1108.2339

We see that the the MCMC derived p-values are slightly more conservative then
those from a t distribution, but still fairly similar. This is a promising approach to
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calculating p-values for mixed models. However, it is important to note that at this
time the method only works on models with varying intercepts. There is no current
implementation for models with correlated random effects, such as those with varying
intercepts and slopes.

1.5 Fitting Generalized Linear Mixed Models

We will conclude this section with a final example from the Ultimatum Game dataset.
The previous examples have used linear mixed models to examine decision conflict.
However, we are also interested in modeling the participant’s actual decisions, which
is a binary choice to either accept or reject the offer. Typically, psychologists would
create the mean acceptance rate at each level of offer amount and then enter these
data into a repeated measures ANOVA. However, this introduces a host of problems,
which are discussed in greater detail by Jaeger (2008)2. The best analytic approach
to this data is to use a mixed logit model to predict participants’ decisions. We will
use the glmer() function and additionally specify that our outcome data comes from
a binomial distribution and that we should use a logit link function.

> m1 <- glmer(Decision ~ Offer + (1 | Subject),

data = data, family = binomial(link = "logit"))

> summary(m1)

Generalized linear mixed model fit by the Laplace approximation

Formula: Decision ~ Offer + (1 | Subject)

Data: data

AIC BIC logLik deviance

363.3 376.7 -178.7 357.3

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 7.7136 2.7773

Number of obs: 642, groups: Subject, 18

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.0823 0.8443 -6.02 1.75e-09 ***

Offer 2.7107 0.2491 10.88 < 2e-16 ***

2This is published in the same special issue of Journal of Memory and Learning as the Baayen
et al., 2008 paper
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:

(Intr)

Offer -0.601

This model indicates that the probability of accepting an offer increases as the amount
of money increases. The parameter estimate for this factor is 2.71 and is in log odds,
which is necessary as a result of the additive nature of a linear model. It can be
quickly converted into an odds-ratio using the exp() command.

We will now fit a number of hypothesis driven models and determine the best model
using our model comparison procedure. We’ll spare you the boring details and will
provide the best fitting model.

> m2 <- glmer(Decision ~ Offer + I(Offer^2) + (1 |

Subject), data = data, family = binomial(link = "logit"))

> m3 <- glmer(Decision ~ Offer * Condition + I(Offer^2) +

(1 | Subject), data = data, family = binomial(link = "logit"))

> m4 <- glmer(Decision ~ Offer * Condition + I(Offer^2) *

Condition + (1 | Subject), data = data,

family = binomial(link = "logit"))

> m5 <- glmer(Decision ~ Offer * Condition + I(Offer^2) *

Condition + (I(Offer^2) | Subject), data = data,

family = binomial(link = "logit"))

> anova(m1, m2, m3, m4, m5)

Data: data

Models:

m1: Decision ~ Offer + (1 | Subject)

m2: Decision ~ Offer + I(Offer^2) + (1 | Subject)

m3: Decision ~ Offer * Condition + I(Offer^2) + (1 | Subject)

m4: Decision ~ Offer * Condition + I(Offer^2) * Condition + (1 |

m4: Subject)

m5: Decision ~ Offer * Condition + I(Offer^2) * Condition + (I(Offer^2) |

m5: Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m1 3 363.34 376.73 -178.67

m2 4 351.79 369.65 -171.90 13.5479 1 0.0002326 ***
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m3 6 340.47 367.25 -164.23 15.3240 2 0.0004704 ***

m4 7 342.41 373.66 -164.21 0.0565 1 0.8121355

m5 9 315.02 355.20 -148.51 31.3931 2 1.524e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(m5)

Generalized linear mixed model fit by the Laplace approximation

Formula: Decision ~ Offer * Condition + I(Offer^2) * Condition

+ (I(Offer^2) | Subject)

Data: data

AIC BIC logLik deviance

315 355.2 -148.5 297

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 25.38311 5.03817

I(Offer^2) 0.36267 0.60222 -0.750

Number of obs: 642, groups: Subject, 18

Fixed effects:

Estimate Std. Error z value

(Intercept) -0.001534 2.355194 -0.001

Offer -3.416735 2.269656 -1.505

ConditionHuman -2.996807 2.384292 -1.257

I(Offer^2) 1.745145 0.616017 2.833

Offer:ConditionHuman 1.086708 2.627859 0.414

ConditionHuman:I(Offer^2) -0.109385 0.656495 -0.167

Pr(>|z|)

(Intercept) 0.99948

Offer 0.13222

ConditionHuman 0.20879

I(Offer^2) 0.00461 **

Offer:ConditionHuman 0.67922

ConditionHuman:I(Offer^2) 0.86767

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
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(Intr) Offer CndtnH I(O^2) Off:CH

Offer -0.820

ConditinHmn -0.596 0.661

I(Offer^2) 0.643 -0.948 -0.576

Offr:CndtnH 0.604 -0.713 -0.966 0.646

CndH:I(O^2) -0.587 0.721 0.911 -0.676 -0.983

The best fitting model turns out to be the same best fitting model as the reaction
time analyses, except treating the quadratic term as a varying slope. These findings
indicate that participants exponentially increase their probability of accepting an
offer as it increases in fairness.
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