
Regression Analysis

Luke Chang

Last Revised July 16, 2010

This section will cover how to run simple correlation analysis and provide a general
introduction to regression analyses in R . Finally, we will also briefly cover robust
regression.

1 Correlations

1.1 Simple Correlations

At the beginning stages of analysis after running simple descriptive statistics, we are
often interested in examining the strength of association between variables. Corre-
lations can be run between two variables X and Y and also on a matrix with several
variables using the cor function. As an example we will use the brain IQ dataset to
examine the degree of association between all of the variables. Because we are only
interested in the continuous values, we can select a smaller section of the data for the
correlation matrix. The type of correlation can be changed using the method option
(e.g., pearson, spearman, or tau). Before we begin we must make sure the data file
is first loaded in the R session.

> brainIQ.data<-read.table(paste(website,"BrainIQ.csv",sep=""),sep=",",

header=TRUE)

> cor(cbind(brainIQ.data[,1:3],brainIQ.data[,7:9]),method="pearson")

CCMIDSA FIQ HC TOTSA TOTVOL WEIGHT

CCMIDSA 1.00000000 0.156251519 0.6127741 0.33719800 0.66178913 0.081694540

FIQ 0.15625152 1.000000000 0.1378395 -0.29131921 -0.06339202 -0.002702510

HC 0.61277412 0.137839520 1.0000000 0.33667365 0.50791438 0.239980555

1

TOTSA 0.33719800 -0.291319208 0.3366737 1.00000000 0.60099543 0.064106714

TOTVOL 0.66178913 -0.063392016 0.5079144 0.60099543 1.00000000 0.207922711

WEIGHT 0.08169454 -0.002702510 0.2399806 0.06410671 0.20792271 1.000000000

We can see that there is no correlation between IQ and any of the other variables.
If anything it seems to be negatively correlated with the total surface area. At this
point I’m sure that many of you may be wondering how we know which correlations
are significant. The default way to check significance of correlations in R is not on a
matrix of data, but pairwise using the cor.test command.

> cor.test(brainIQ.data$FIQ,brainIQ.data$TOTSA,method="pearson")

Pearson's product-moment correlation

data: brainIQ.data$FIQ and brainIQ.data$TOTSA

t = -1.292, df = 18, p-value = 0.2127

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.6500402 0.1735784

sample estimates:

cor

-0.2913192

Using this pairwise method we see that the correlation between FIQ and total sur-
face area doesn’t even approach significance. This can be more clearly illustrated
graphically using a scatterplot, which reveals that there is considerable variability in
the degree of association between the two variables.

> plot(brainIQ.data$FIQ,brainIQ.data$TOTSA)

For those that desperately need to see a correlation matrix with significance values
there are two main approaches. Unlike other statistical analysis packages, it is possi-
ble to write your own functions in R which includes statistical analyses. Because we
know from our undergraduate introductory statistics class that it is relatively easy to
calculate a correlation coefficient and its accompanying p-value, we could just write
the function ourselves. The details of creating your own functions will be discussed
in a later chapter. Alternatively, we could take advantage of the open source nature
of R and scour the internet for somebody else who has spent hours of their own time
to write the function and selflessly shares it on their own personal webpage. It prob-
ably goes without saying, but it is important to be cautious of using other people’s
work without first checking to make sure it works correctly. Here I illustrate how to

2

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

90 100 110 120

17
00

18
00

19
00

20
00

21
00

22
00

brainIQ.data$FIQ

br
ai

nI
Q

.d
at

a$
TO

T
S

A

Figure 1: Scatterplot illustrating the degree of association between IQ and Total
Surface Area

3

use somebody else’s function in your own session. It is first necessary to load the
function using the source command.

> source(paste(website,"cor.prob.R",sep=""))

Now that the function is loaded, we can use it to create another correlation matrix on
the same data as earlier. This function however reports the correlation coefficients
in the lower triangle of the matrix (i.e. below the diagonal) and the p-values on the
upper triangle (i.e. above the diagonal)

> cor.prob(cbind(brainIQ.data[,1:3],brainIQ.data[,7:9]))

CCMIDSA FIQ HC TOTSA TOTVOL WEIGHT

CCMIDSA 1.00000000 0.510638667 0.004072067 0.14598007 0.001481729 0.7320518

FIQ 0.15625152 1.000000000 0.562236477 0.21269901 0.790616477 0.9909779

HC 0.61277412 0.137839520 1.000000000 0.14664764 0.022233887 0.3081493

TOTSA 0.33719800 -0.291319208 0.336673652 1.00000000 0.005070081 0.7883070

TOTVOL 0.66178913 -0.063392016 0.507914378 0.60099543 1.000000000 0.3790457

WEIGHT 0.08169454 -0.002702510 0.239980555 0.06410671 0.207922711 1.0000000

1.2 Partial Correlations

Occasionally we are interested in examining the relationship between two variables
while controlling for a third variable. There isn’t a default function in R to do this,
because it can also be easily performed using the regression function. However, just
like the correlation significance function we used earlier, we can simply use somebody
else’s hard work. In this case we will load the pcor.test function by using the
source("pcor.R") command. To use this function it is necessary to specify an X a
Y, and a Z, which can be either a single variable or a data frame of several variables.
For example, suppose we were interested in examining the relationship between IQ
and the the total surface area, while taking into account the surface area of the
corpus callosum.

> source(paste(website,"pcor.R",sep=""))

> pcor.test(brainIQ.data$FIQ,brainIQ.data$TOTSA,brainIQ.data$CCMIDSA)

estimate p.value statistic n gn Method Use

1 -0.3699515 0.1006241 -1.641835 20 1 Pearson Var-Cov matrix

We can see that the negative relationship between IQ and total surface area increases
after taking into account the corpus callosum surface area.

4

2 Model Building

Building models is one of the most relied on tools of statistical analysis and for-
tunately is very straightforward in R . This section will cover the basics of model
building in R including running a regression analysis using the lm function, adding
factors, interactions, and polynomials, and comparing models.

2.1 Sum of Squares

It is important to note that lm uses Type I Sum of Squares, which means that it
sequentially adds the predictors to the model. This is different than the defaults in
SPSS and SAS which employ the Type III Sum of Squares and means that order of
entry matters, with shared variance going to the preceding terms.

2.2 Using lm

The standard function to run a regression is the lm function (linear model). To specify
a model it is necessary to indicate that the dependent variable Y is predicted ~ by the
independent variables X. It is also necessary to specify a data file (data=?).

For this section we are going to use a dataset from an experiment using the Ultimatum
Game, which is a simple financial bargaining task from behavioral economics.1 In
this game there are two players. Player A is endowed with a sum of money, let’s
say $10, and is charged with the task of splitting the money between them any way
they see fit. The twist to this game is Player B ultimately decides if they want to
accept the offer as proposed, in which case both players receive the proposed division
of money, or reject the offer, in which case neither player receives any money. We
already know that participants usually reject unfair offers with greater frequency
playing with humans compared to computers (Sanfey, et al. 2003). In this dataset
we are interested in looking at decision conflict (Pochon et al., 2009) by examining
the amount of time it takes to make a decision. We assume that longer reaction
times (RT) indicate greater decision conflict.

First we need to load the dataset.

1This data is taken from Chang & Sanfey (2009) Frontiers in Behavioral Neuroscience and Chang,
Smith, & Sanfey (In Preparation)

5

> data<-read.table(paste(website,"UG_Data.txt",sep=""),header=TRUE,

na.strings=999999)

Next we will build our first model by testing the question ”Does the amount of money
offered predict changes in RT?”

> m1<-lm(RT~Offer,data=data)

To examine the results of our analysis, we look at a summary of m1

> summary(m1)

Call:

lm(formula = RT ~ Offer, data = data)

Residuals:

Min 1Q Median 3Q Max

-2135.5 -765.4 -359.2 507.1 5913.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2260.71 97.00 23.31 < 2e-16 ***

Offer -125.17 31.06 -4.03 6.25e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1170 on 646 degrees of freedom

Multiple R-squared: 0.02452, Adjusted R-squared: 0.02301

F-statistic: 16.24 on 1 and 646 DF, p-value: 6.253e-05

We see that overall unfair offers seem to increase decision conflict.

2.3 Adding factors, interactions, and polynomials

However, we know that people often adhere to simple decision rules, such as ”I’m
only going to accept offers greater than $2, and I will always accept $5 offers.” This
means that we may need to model a quadratic term for the amount of money offered.
To do this we use the I() identity function to specify a squared term.

> m2<-lm(RT~Offer+I(Offer^2),data=data)

> summary(m2)

6

Call:

lm(formula = RT ~ Offer + I(Offer^2), data = data)

Residuals:

Min 1Q Median 3Q Max

-2143.0 -779.4 -285.3 529.8 5781.0

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1431.87 205.87 6.955 8.67e-12 ***

Offer 587.64 159.78 3.678 0.000255 ***

I(Offer^2) -116.04 25.53 -4.545 6.55e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1152 on 645 degrees of freedom

Multiple R-squared: 0.05479, Adjusted R-squared: 0.05186

F-statistic: 18.7 on 2 and 645 DF, p-value: 1.280e-08

Interestingly, we see that adding the quadratic term reverses the direction of the
amount of offer, with larger offers resulting in slower response times. More im-
portantly we observe a negative parameter for the quadratic term, which indicates,
consistent with our hypothesis, that people have greater decision conflict when the
offers deviate from their simple heuristics and become more ambiguous. Next we
might be interested in seeing if this effect interacts with the type of partner with
which they are playing (e.g., a computer or a human). R automatically will add main
effects terms if you only specify the interaction term in the model. In addition, the
default mode in R is to use dummy codes, which means you must specify a reference
group if there are nominal factors. First it is useful to check and see if the factor is
ordered using the is.ordered function. Next it is important to make sure that the
correct level of the factor is being set as the reference group. This can be inspected
using the levels command, with the first level being the reference. The reference
group can be easily changed if necessary using the relevel command.

> is.ordered(data$Condition)

[1] FALSE

> levels(data$Condition)

[1] "Computer" "Human"

7

> data$Condition<-relevel(data$Condition,ref="Computer")

After ensuring that the factor has the correct reference group, we can now proceed
with the analysis.

> m3<-lm(RT~Offer*Condition+I(Offer^2),data=data)

> summary(m3)

Call:

lm(formula = RT ~ Offer * Condition + I(Offer^2), data = data)

Residuals:

Min 1Q Median 3Q Max

-2198.9 -793.5 -278.7 508.7 5725.1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1577.55 246.42 6.402 2.96e-10 ***

Offer 542.73 165.64 3.276 0.00111 **

ConditionHuman -218.53 202.82 -1.077 0.28169

I(Offer^2) -116.04 25.55 -4.542 6.64e-06 ***

Offer:ConditionHuman 67.36 64.96 1.037 0.30012

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1153 on 643 degrees of freedom

Multiple R-squared: 0.05655, Adjusted R-squared: 0.05068

F-statistic: 9.635 on 4 and 643 DF, p-value: 1.43e-07

Here we find that their is no main effect for the type of partner nor is there an
interaction with the amount of money offered in predicting RT. However, we are
actually interested in the interaction with the quadratic term, so we will now add a
new interaction term to the model.

> m4<-lm(RT~Offer*Condition+I(Offer^2)*Condition,data=data)

> summary(m4)

Call:

lm(formula = RT ~ Offer * Condition + I(Offer^2) * Condition,

data = data)

8

Residuals:

Min 1Q Median 3Q Max

-2159.3 -772.4 -272.6 521.8 5813.6

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2130.50 355.81 5.988 3.54e-09 ***

Offer 67.19 276.15 0.243 0.8078

ConditionHuman -1047.95 435.77 -2.405 0.0165 *

I(Offer^2) -38.63 44.12 -0.875 0.3817

Offer:ConditionHuman 780.66 338.22 2.308 0.0213 *

ConditionHuman:I(Offer^2) -116.12 54.04 -2.149 0.0320 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1150 on 642 degrees of freedom

Multiple R-squared: 0.06328, Adjusted R-squared: 0.05599

F-statistic: 8.675 on 5 and 642 DF, p-value: 5.705e-08

Here we observe a significant interaction term for the quadratic offer amount and
the type of partner. This supports our hypothesis that people have more decision
conflict when trying to decide to accept or reject ambiguously fair offers from humans
in comparison to computers.

We can plot this effect by fitting separate models for each condition (e.g., Human
and Computer). We then extract the parameter estimates using the coef function
and use matrix multiplication to create a vector of predicted Y values by multiplying
the matrix of X values by the parameter estimates. Next we create a data frame
containing the predicted RT values for each offer amount and plot a line going through
these points using spline interpolation.

> h<-subset(data,data$Condition=="Human")

> c<-subset(data,data$Condition=="Computer")

> mh<-lm(RT~Offer+I(Offer^2),data=h)

> mc<-lm(RT~Offer+I(Offer^2),data=c)

> coefh<-coef(mh)

> coefc<-coef(mc)

> yh<-cbind(1,h$Offer,h$Offer^2) %*% coefh

> yc<-cbind(1,c$Offer,c$Offer^2) %*% coefc

> hpt<-cbind(h$Offer,yh)

9

1 2 3 4 5

0
20

00
40

00
60

00
80

00

Offer Amount ($)

R
ea

ct
io

n
T

im
e

(S
ec

on
ds

)
Partner Type

Human
Computer

Figure 2: Increased decision conflict for ambiguous offers from humans compared to
computers

> cpt<-cbind(c$Offer,yc)

> hdat<-data.frame(unique(hpt))[order(data.frame(unique(hpt))[1]),]

> cdat<-data.frame(unique(cpt))[order(data.frame(unique(cpt))[1]),]

> plot(RT~Offer,data=data,col=rgb(0,0,0,.1),pch=16,cex=4,

ylab="Reaction Time (Seconds)",xlab="Offer Amount ($)")

> lines(spline(hdat),col="red",lwd=5)

> lines(spline(cdat),col="blue",lwd=5,lty=2)

> legend("topright", c("Human","Computer"), pch=15, col=c("red","blue"),

title="Partner Type", inset = .02)

10

2.4 Model comparisons

While the last model supports our hypothesis, it is important to test whether the
model provides the best account of our data given that it is also the most complex
model with a total of six free parameters. To compare nested models we can use the
anova function.

Comparing a series of models that incrementally increase in complexity is essentially
how you would conduct a hierarchical or step-wise regression analysis. The signifi-
cance of the F value determines if the additional level explains a significant amount
of variance above and beyond the previous level.

> anova(m1,m2,m3,m4)

Analysis of Variance Table

Model 1: RT ~ Offer

Model 2: RT ~ Offer + I(Offer^2)

Model 3: RT ~ Offer * Condition + I(Offer^2)

Model 4: RT ~ Offer * Condition + I(Offer^2) * Condition

Res.Df RSS Df Sum of Sq F Pr(>F)

1 646 883590681

2 645 856168411 1 27422270 20.7490 6.267e-06 ***

3 643 854579582 2 1588829 0.6011 0.54852

4 642 848477290 1 6102291 4.6173 0.03202 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We can see from our example that model 2, in which we added a quadratic term for
the amount of money offered fits the data significantly better than model 1. Model
3 does not fit better than model 2, indicating that adding the interaction between
amount of money offered and condition does not improve the model fit. Finally, we
see that adding the interaction between the quadratic amount of money offered with
the type of partner in model 4 provides the best account of the data.

2.5 Model Assumptions

Before drawing any grand conclusions from our modeling results, it is important
to test that all of the assumptions of the regression analysis were met. Regression

11

diagnostics will be covered in a later chapter. Some of you may have already noticed
this, but there is a very large violation of the statistical independence assumption.
We have used 36 trials from each subject, but have treated them as independent
subjects, which has dramatically boosted our power, but also changed the variance
structure of our dataset. In a later chapter we will continue with this example to
demonstrate how this can be framed as a mixed model problem and easily addressed
using a more sophisticated stats package.

3 Robust Regression

Ordinary least squares regression has several underlying assumptions such as ho-
moscedasticity and homogeneity of variance. Violations of these assumptions can
lead to spurious estimates. While it is often argued that OLS is robust to outliers,
it is typically meant in terms of Type-I error, not Type-II error. Extreme outliers
will dramatically decrease the likelihood of observing a significant effect. Often these
extreme values are removed from data analysis. An alternative approach is to use
robust regression. Robust regression adopts a different approach to estimation that
uses iteratively re-weighted least squares and is robust to both heterscedasticity and
extreme outliers. Basically, robust regression will reduce the weight given to data
points that have a strong influence on the parameters.

First we need to create some fake data. To demonstrate the effect of outliers on the
model estimations, we will add two outliers.

> n <- 20

> x <- seq(1, n)

> a.true <- 3

> b.true <- 1.5

> y.true <- a.true + b.true * x

> s.true <- 20

> y <- y.true + s.true * rnorm(n,sd=.15)

> y[n]<-0

> y[n-2]<-1

Next we need to load the robust library and fit the two models using lm and lmrob,
the latter of which uses an MM-estimator.

> library(robust)

12

pcaPP 0.1-1 loaded

Scalable Robust Estimators with High Breakdown Point (version 1.0-00)

> fm1<- lm(y ~ x)

> fm2<- lmrob(y ~ x)

Finally, we will examine differences in the model fits and plot the estimated effects
to highlight the influences of the outliers.

> summary(fm1)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-22.187 -2.645 1.423 6.608 11.867

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.7960 4.1780 1.866 0.0784 .

x 0.7196 0.3488 2.063 0.0538 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.994 on 18 degrees of freedom

Multiple R-squared: 0.1912, Adjusted R-squared: 0.1463

F-statistic: 4.256 on 1 and 18 DF, p-value: 0.05383

> summary(fm2)

Call:

lmrob(formula = y ~ x)

Weighted Residuals:

Min 1Q Median 3Q Max

-32.7021 -2.9435 -0.7096 1.4181 5.6032

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5820 1.6537 1.561 0.136

13

x 1.5060 0.1619 9.304 2.68e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Robust residual standard error: 3.784

Convergence in 9 IRWLS iterations

Robustness weights:

2 observations c(18,20) are outliers with |weight| = 0 (< 0.005);

The remaining 18 ones are summarized as

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.8102 0.9114 0.9866 0.9454 0.9941 0.9980

Algorithmic parameters:

tuning.chi bb tuning.psi refine.tol rel.tol

1.5476400 0.5000000 4.6850610 0.0000001 0.0000001

nResample max.it groups n.group best.r.s k.fast.s k.max

500 50 5 400 2 1 200

trace.lev compute.rd

0 0

seed : int(0)

Here we can see that the two outliers dramatically influence both the parameter
estimated for x and it’s standard error. The robust regression estimate is more
accurate because it down weights the influence of the two outliers. This is clearly
depicted in the regression lines in Figure 3. The lmrob output also informs you
that it has identified two outliers and is unsure of 4 data points, so it weights the
remaining 14 data points the most strongly.

> plot(y~x,pch=16, col="black",cex=2)

> abline(fm1,col="black",lwd=4)

> abline(fm2,col="red",lty=2,lwd=4)

> legend("topleft", c("OLS","MM-Estimator"), pch=15, col=c("black","red"),

title="Estimation", inset = .02)

14

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
5

10
15

20
25

30

x

y

Estimation

OLS
MM−Estimator

Figure 3: Influence of outliers on OLS and robust regression

15

